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ABSTRACT

Two-dimensional thermal models for automated tape placement (ATP) of thermoplastic
composites neglect the diffusive heat transport that occurs between the newly placed tape and the
cool substrate beside it.  Such lateral transport can cool the tape edges prematurely and weaken
the bond.  The three-dimensional, steady state, thermal transport equation is solved by the
Green’s function method for a tape of finite width being placed on an infinitely wide substrate.
The isotherm for the glass transition temperature on the weld interface is used to determine the
distance inward from the tape edge that is prematurely cooled, called the cooling incursion  a∆ .
For the Langley ATP robot, 4.0=∆a mm for a unidirectional lay-up of PEEK/carbon fiber
composite, and 2.1=∆a mm for an isotropic lay-up.  A formula for  a∆   is developed and
applied to a wide range of operating conditions.  A surprise finding is that  a∆   need not
decrease as the Peclet number  Pe  becomes very large, where  Pe  is the dimensionless ratio of
inertial to diffusive heat transport.  Conformable rollers that increase the consolidation length
would also increase  a∆ , unless other changes are made, such as proportionally increasing the
material speed.  To compensate for premature edge cooling, the thermal input could be extended
past the tape edges by the amount  a∆ .  This method should help achieve uniform weld strength
and crystallinity across the width of the tape.
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1.  INTRODUCTION

The strength and high-temperature properties of carbon-fiber thermoplastic composites make
them ideal for many structural applications.  However, fabrication with these composites can be
labor-intensive and costly.  Automated tape placement (ATP) is a process designed to reduce this
cost.  In ATP, thermoplastic composite tape is placed on the previous layer and welded by heat
and pressure to build up a laminated structure, as shown in Fig. 1.

Mathematical models have been developed to control and optimize the ATP process.  Most of
these models (refs. 1-10) are two-dimensional, as shown, for example, in Fig. 2.  They restrict
the heat transport to the x-y plane, and neglect the heat transport in the z-direction.  In refs. 5-10,
this two-dimensional approximation is justified partly by stating that the Peclet number  1Pe>> ,
where  Pe  is the dimensionless ratio of inertial to diffusive heat transport.  The present
modeling study should determine if sufficiently large values of  Pe  do, indeed, justify the two-
dimensional approximation.

If the applied heat  0q   is uniform across the tape width and zero outside, as shown in Fig. 1, a

strong thermal gradient occurs in the substrate along the side edges of the tape.  This thermal
gradient can prematurely cool the tape edges and weaken the bond by causing heat to flow from
the hot tape to the cool substrate beside it.

The main purpose of this study is to help achieve uniform weld strength and crystallinity across
the width of the tape.  For this purpose, the model will determine the prematurely cooled distance
inward from the tape edge (the cooling incursion  a∆ ) over a large range of processing
parameters.  This range includes the present operating condition of the ATP robot at Langley
Research Center.  The approach is to use the Green’s function technique to obtain an analytic
solution of the three-dimensional thermal transport problem shown in Fig. 1.  Related studies at
the leading edge of a new tape and at the trailing edge of a dropped tape are presented in refs. 8
and 9.

2. THREE-DIMENSIONAL MODEL

Figure 1 shows the steady state configuration where the laydown/consolidation head is fixed and
the material moves with speed  U   beneath it.  The Cartesian coordinate frame is fixed with the
head, and its origin lies at the center of the nip line.  The thermal input   0q   is directed at the nip

line and is constant over the width of the tape )( aza ≤≤−  and zero elsewhere.  Far away from

the nip, the supporting tool and the head are both maintained at temperature  ∞T , which is

usually room temperature.  The thermal input  0q   is constrained so that the temperature on the

weld interface always decreases passively to the glass transition temperature  gT   at the

downstream end of the consolidation head  hx , where the pressure is released, as shown in Fig.

2.  This constraint is enforced in the two-dimensional limit as ∞→a

∞→a

lim
gh TzxT =),0,( (1)
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where  z   remains finite.  In spite of this constraint, three-dimensional effects will cool the weld
interface near the tape edge to  gT   in a shorter distance than  hx .

The supporting tool and the head are taken to have the same thermal conductivity as the average
thermal conductivity of the composite substrate.  This assumption enables the configuration
shown in Fig. 1 to be approximated by a line thermal source of length  a2   that is fixed along the
z -axis in an infinite moving conductor.  The three-dimensional thermal transport equation then
becomes
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where

ρ density, kg m-3

Cp specific heat at constant pressure, J kg-1 K-1

U   material speed in the positive x -direction, m s-1

T temperature, K

332211 ,, KKK tensor conductivities along the  x -, y -, and z -axes, W m-1 K-1

q0   thermal input power density at nip, W m-1

)(),( yx δδ  Dirac delta functions, m-1

)(zS Heaviside unit step function
a Half width of tape, m

Dimensionless (primed) quantities are defined as follows:
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The partial derivatives become
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and (2) can be written
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where

( ) ( ) ( )[ ]'''')'()'(' 2',','' 0 azSazSyxqzyxq −−+= δδπ (4b)

subject to the boundary condition that  0'→T  as  ,',' yx  or  ∞→'z .  In dimensionless variables,
the constraint (1) becomes

∞→'
lim

a
1)',0,1(' =zT (5)

where  'z   remains finite.  In order to solve (4) in the infinite domain, an adjoint Green’s function
( )',','| ',','' 000 zyxzyxH  is defined that satisfies the adjoint equation
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where  'H  also vanishes at infinity.  Multiplying (4a) by  'H   and (6) by  'T , subtracting, and
integrating by parts over the infinite ',',' zyx -domain gives
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Equation (6) can be solved by the method of Fourier transforms to obtain the adjoint Green’s
function
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If the ',',' zyx -variables are interchanged with the  ',',' 000 zyx -variables, equations (7), (4b), and

(8) become
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Substituting (9b) and (9c) into (9a) and integrating gives
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As mentioned, the dimensionless thermal input  '0q  is determined by the constraint (5).  If (10) is

substituted into (5) and the identification is made that
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where  'u   is a dummy variable of integration and  ( )bK0   is a hyperbolic Bessel function, then
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The dimensionless temperature field (10) becomes finally
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Note that this solution depends on only two dimensionless parameters: b  and the dimensionless
half-width  'a .

3. ISOTHERMS ON THE WELD INTERFACE

As shown in Figs. 1 and 2, the weld interface occurs on the plane 0'=y .  Equation (13) can be
used to plot the isotherms of dimensionless temperature  'T  on this plane.  (Computations are
actually done on the plane  001.0'=y   to avoid the infinite temperature along the nip line
( ''' ,0' ,0' azayx ≤≤−== ).)

The interface isotherms are plotted in Fig. 3 for  5.1'=a   and three values of  b .  The value
10=b  corresponds to the present operating condition of the Langley ATP robot.  Cooling along

the edge of the tape  )5.1''( == az   is clearly evident.  In the absence of this cooling, the isotherm
1'=T   would lie on  1'=x   across the full width of the tape, in accordance with the constraint

(5).

The  1'=T   isotherm, which corresponds to the glass transition temperature, is used to quantify
the dimensionless cooling incursion  'a∆ , as follows:  The dimensionless distance from the tape
edge  )5.1''( == az   to the point where the  1'=T    isotherm reaches  1'=x   defines  'a∆ .  As
shown in Figs. 3(b) and 3(c), 'a∆   decreases as  b   increases.  In fact, 'a∆   is purely a function
of  b .  The dependence of  'a∆   on  b , as determined numerically from (13), is plotted in Fig. 4.

The cooling incursion  a∆   (in m) is then determined from the inverse of (3e)
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Also plotted in Fig. 4 is an approximate formula for  ( )ba'∆ , given by

( )[ ] ( )[ ]4.104.tanh1
415.1

1011.tanh1
66.1

' −++−−≈∆ b
b

b
b

a              (15)

Substitution of this formula (15) and (3c) into (14) then gives

( ) ( )[ ] ( )[ ]4.104.tanh1 21011.tanh1
32.3

2/1

33
2/1

3311 −+









+−−≈∆ b

UC

xK
b

UC

KK
a

p

h

p ρρ
           (16)



7

where  a∆   (in m) is the cooling incursion inward from the tape edge.  For  10>b , the second
term on the right hand side is dominant, and (16) can be written
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4. EXAMPLE

This example illustrates the application of (14)-(16) and Fig. 4.  It starts from the present
operating condition of the Langley ATP robot, where the consolidation length  31027.1 −×=hx

m and the speed 0425.0=U  m s-1.  For PEEK/carbon fiber tape laid-up unidirectionally, the
thermal conductivity components are given by 611 =K  W m-1 K-1  and  72.03322 == KK  W m-1

K-1.  The density and specific heat are given by  1560=ρ  kg m-3  and  1425=pC  J kg-1 K-1.

Substituting these values in (3c) gives  10=b .  Figure 4 or, alternatively, equation (15) then
gives  .1'=∆a   Substitution in (14) or (16) finally gives the cooling incursion inward from the
edge of the tape as 4.0=∆a  mm.  This point is plotted on the lower curve of Fig. 5.

As the performance of the Langley robot is upgraded in the future, both  U   and  hx   will

increase.  The increase in  hx   results from a desire to make the consolidation roller more

conformable.  Also, increasing  hx   increases the effective bonding time, as show by sensitivity

studies presented in ref. 10.  Suppose that both  U   and  hx   are doubled.  Then  40=b   and a

second point can be calculated and plotted on the lower curve of Fig. 5.  This entire curve is
obtained by proportionally increasing (or decreasing)  U   and  hx   from the initial point

)10( =b .

If successive layers are angled to make the composite substrate isotropic, the average values of
the conductivity components become  72. ;36.3 223311 === KKK .  Recalculation with these

values (and recalling that  b   depends on  11K ) gives the upper curve in Fig. 5, where the
minimum cooling incursion  2.1=∆a  mm.

5.  DISCUSSION

A comparison of Figs. 4 and 5 shows that, although  'a∆   is a decreasing function of  b , a∆
levels off for  10>b .  Equation (17), which is valid for  10>b , provides the following
explanation:  If  U   and  hx   are increased proportionally, as done in the example shown in Fig.

5, then  a∆   remains constant when  10>b .

The range  ( )10>b   is of great interest in ATP.  Increases in the speed  U   benefit the

productivity of a unit, and increases in  hx   are a natural consequence of the trend toward using

conformable rollers.  As shown by (17), however, increasing  hx   has the undesirable effect of
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increasing the cooling incursion  a∆ .  A rearrangement of the plies that increases the average
value of  33K   also increases  a∆ , as does any decrease in the density  ρ   or the specific heat

pC .  To counteract these adverse effects on  a∆ , U   could be simultaneously increased, as

exemplified in Fig. 5.

Equation (17) shows clearly that for  10>b   the cooling incursion  a∆   need not decrease as  the
Peclet number  11/2Pe KUxCb hpρ==   increases.  If the increase in  Pe  is due solely to a

decrease in 11K , a∆   will not be changed.  If the increase in  Pe  is due solely to an increase in

hx , a∆   will actually increase.  Therefore, large values of  Pe  do not necessarily justify the use

of a two-dimensional approximation in ATP thermal transport models.

A simple fix for the tape-edge cooling problem is to extend the thermal input past the tape edges
by the amount  a∆ , as given by (14), (16) or (17).  This approach should help achieve uniform
strength and crystallinity across the width of the tape.  Of course, extending the thermal input
past the tape edges would cause some substrate reheating as the tape is repetitively placed side-
by-side.  Such reheating must be minimized to reduce thermal degradation.  Formulas (14), (16),
and (17) should help provide these minimum values.

6. CONCLUSIONS

The idealized three-dimensional thermal transport problem for the ATP configuration shown in
Fig. 1 was found to have a relatively simple analytic solution (13) for the dimensionless
temperature  )',','(' zyxT .  This solution depends on only two parameters, 2/Pe=b , where  Pe
is the Peclet number, and the dimensionless tape half-width 'a .  Plots of the dimensionless
isotherms on the weld interface reveal premature cooling along the side edge of the tape.  This
cooling results from the large thermal gradient between the newly placed tape and the cool
substrate beside it.

The prematurely cooled dimensionless distance inward from the tape edge  'a∆   was determined
from the  1'=T   isotherm, which corresponds to the glass transition temperature  gT .  The

inward sweep of this isotherm at the downstream end of the consolidation head, where  1'=hx ,

defines  'a∆ .  As determined numerically, 'a∆   was found to be a monotonically decreasing
function of  b  alone.

An approximate formula for  )(' ba∆   was also found (15).  This formula was then inverted to
give the cooling incursion  a∆  (in m).   For the important range  10>b ,  the formula for  a∆
reduces to a simple form (17).  This simple form shows, surprisingly, that large values of the
Peclet number  b2Pe=   do not necessarily justify the two-dimensional thermal approximation
that is often used in ATP models.

For the Langley ATP robot, presently operating at  10=b  with PEEK/carbon fiber composite,
the cooling incursion is in the range ( )mm 2.1mm 4.0 ≤∆≤ a .  The lower value corresponds to a
unidirectional lay-up, and the higher value to an isotropic lay-up.  An upgrade in roller
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conformability that increases the consolidation length  hx   would increase  a∆   unless a

compensating change is made, such as proportionally increasing the material speed.

A simple fix for the tape-edge cooling problem is to extend the thermal input past the tape edges
by the amount  a∆ , as given by formulas (14, (16), or (17).  This approach should help achieve
uniform weld strength and crystallinity across the width of the tape.
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Figure 1.  Three-dimensional sketch of the automated tape placement (ATP) process.  Heat  0q  is

directed at the nip (the line defined by the z -axis) and distributed uniformly over the width of
the tape )( aza ≤≤− . Pressure is applied over the distance ( )hxx ≤≤0 .
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Figure 2.  Two-dimensional approximation to the three-dimensional model shown in Fig. 1.
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Figure 3.  Isotherms of dimensionless temperature  'T   on the weld interface ( '' zx − plane ) for
dimensionless half-width  5.1'=a   and various  b .  The 'x -axis (vertical axis) lies along the
centerline of the tape.  The edge of the tape is at  5.1'' == az .  Consolidation ends at  1'=x .
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       Figure 3.  Concluded.

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

b

∆ a'

Exact
Approx

Figure 4.  Dimensionless distance inward from tape edge affected by premature cooling  'a∆   vs.
b .  Approximate curve is from equation (15).
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Figure 5.  Distance inward from tape edge affected by premature cooling (the cooling incursion)
a∆   vs.  b   for the example presented in section 4.
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